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NUMERICAL ANALYSIS OF MEMBRANE
STABILITY IN AIR FLOW
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A numerical analysis of membrane stability in air flow is presented. The flow is treated
as incompressible and potential. The divergent type and the flutter type of the loss of
stability are studied. The problem is described by differential and integral equations, and
the FEM and BEM are used to solve these equations, respectively. To discretize the
membrane surface, triangular curvilinear six-node elements are applied. The eigenvalues
of the matrix equation representing the quadratic eigenvalue problem give the complex
frequencies of the membrane and enable one to predict whether the membrane motion is
stable or unstable. Dimensionless stability analyses of circular, square and rectangular
membranes are presented.
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1. INTRODUCTION

In this paper, the stability analysis of a membrane in air flow is presented. The membrane
is supported in an infinite baffle and coupled to an air half-space. Air flows over the
membrane surface. The flow is treated as incompressible and potential. This model can
be used as an approximation of more complex structures in an air flow. Membrane stability
in an air flow has been considered in many papers [1–8]. This problem is well presented,
especially in reference [1]. In most of these papers the flow is treated as two-dimensional
and usually analytic methods are used in calculations.

Here a numerical approach to membrane stability in an air flow is presented. The
numerical approach enables the stability analysis to be performed for any shape of the
membrane, which is not possible with analytical methods. The membrane is discretized by
elements that are simultaneously the finite elements for the membrane and the boundary
elements for the air. Triangular curvilinear six-node elements are used. The velocity
potential of the air satisfies the Laplace equation. The solution of this equation is expressed
as a boundary integral equation. The boundary conditions on the surface are of the
Neumann type. The problem is described by differential and integral equations. The finite
element method (FEM) is used to solve the differential equations. Finite element equations
are formulated by the weighted residuals method with Galerkin’s criterion. The solution
of the intergral equation is determined by means of the boundary element method (BEM).
The eigenvalues of the matrix equation representing the quadratic eigenvalue problem give
the complex frequencies of the structure and enable one to predict whether the structure
motion is stable or unstable.
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2. PROBLEM FORMULATION

The membrane, of any shape, is supported in an infinite baffle (see Figure 1). The air
flows over the membrane surface and does not flow under it. It is assumed that the air
is incompressible and inviscid and the flow is potential and three-dimensional.

The perturbation air velocity potential 81(x, t) satisfies Laplace’s equation

9281 =0. (1)

The integral solution of this equation for the half-space (x3 e 0) has the form of a
boundary integral equation. This is the Rayleigh integral equation [9] for the
incompressible air:

81(P, t)=
1
2p gs

181(Q, t)
1x3

1
r(P, Q)

dSQ . (2)

The boundary condition on the surface S is of the Neumann type and is the coupling
conditions between the structure and the air. It is given by (see, e.g., reference [10])

181/1x3 = 1w/1t+U1w/1xa , (3)

where w=w(x1, x2, t) is the normal displacement of the membrane and U is the air flow
velocity.

The perturbation pressure on the structure is (see, e.g., reference [10])

p1 =−r(181/1t+U181/1xa), (4)

where r is the air density. After the substitution U=0 the perturbation pressure of the
air under the membrane p2 = p2(P, t) can be obtained by using equations (2)–(4). The
resultant aerodynamic pressure is

p(P, t)=p1(P, t)+p2(P, t). (5)

The linear equation of motion of the membrane is

T11
2w/1x2

1 +T21
2w/1x2

2 + m12w/1t2 =−p, (6)

where m is the mass of the membrane per unit area, and T1 and T2 are the membrane
tensions per unit length in the x1 and x2 directions, respectively.

Figure 1. A membrane in flow.
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Figure 2. The notation for equation (16).

3. NUMERICAL SOLUTION OF THE PROBLEM

The pressure on the surface of the membrane is described by one boundary integral
equation (2) and two differential equations (3) and (4). Upon separating the space and time
variables and expressing the solution with respect to time in the exponential form (e.g.,
p(P, t)=p̃(P) elt, l= g2 iv, i=z−1, v is the circular frequency, g is a coefficient
influencing the amplitude (vibrations increase for gq 0)), equations (2)–(4) and (6) yield

8̃1(P)=
1
2p gs

f	 1(Q)
1

r(P, Q)
dSQ , f	 1 = lw̃+U

1w̃
1xa

, (7, 8)

p̃1 =−r 0l8̃1 +U
18̃1

1xa1 , −T1
12w̃
1x2

1
−T2

12w̃
1x2

2
+ l2mw̃= p̃, (9, 10)

where f	 1 = 18̃1/1x3.
The finite element method is used to solve differential equations (8)–(10). The finite

element equations are formulated by the method of weighted residuals with Galerkin’s
criterion [11]. The solution of the boundary integral equation (7) is determined by means
of the boundary element method [12]. The surface of the structure is discretized by using
six-node isoparametric curvilinear triangular elements. These elements are simultaneously
the boundary elements for the air and the finite elements for the structure. Using the FEM
to solve equations (8)–(10), one obtains the set of algebraic equations

B1f	 1 = (lB1 +UB2)w̃, B1p̃1 =−r(lB1 +UB2)8̃1, (11, 12)

(−T1B3 −T2B4 + l2mB1)w̃=B1p̃, (13)

where f	 1, w̃, p̃, p̃1, and 8̃1 are the quantities in the element nodes forming the vectors. The
matrices B1, B2, B3 and B4 are constructed from the finite element matrices Be

1, Be
2, Be

3 and
Be

4, which are given by

Be
1 =gSe

NTN dSe , Be
2 =gSe

NT 1N

1xa

dSe ,

Be
3 =−gSe

1NT

1x1

1N

1x1
dSe , Be

4 =−gSe

1NT

1x2

1N

1x2
dSe , (14)
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where N=[N1, . . . , N6] is the matrix of element shape functions. The integrals (14) are
computed numerically by using the Gauss integration formulas. The boundary element
discretization of equation (7) results in the matrix equation

8̃1 =Af	 1. (15)

The elements Amn of the matrix A are given by (see Figure 2)

Amn =
1
2p

s
e

j=1 gSj

N(j)
n

1
r(m, Q)

dSQ , (16)

where N( j)
n is the interpolation function for element j specified at the nth node and e denotes

the number of elements coincident with node n. The integrals (16) are computed
numerically by using the Gauss integration formulas. For m= n a singularity of 1/r type
occurs and special analytical–numerical integrations are adopted [13].

Using equations (15), (11) and (12) one obtains

p̃1 =−r[l2A+ lU(AB5 +B5A)+U2B5AB5]w̃, (17)

where B5 =B−1
1 B2. This equation represents the relationship between the vector of

aerodynamic pressure amplitudes and the vector of displacement amplitudes of the
membrane. After the substitution U=0 in equation (17) one obtains the vector of pressure
amplitudes for the air under the membrane:

p̃2 =−rl2Aw̃. (18)

Now substituting equations (17), (18) and (5) into the membrane equation (13) yields the
homogeneous matrix equation

(K+ lG+ l2M)w̃=0, (19)

where K=Ks +Ka , M=Ms +Ma , w= w̃ elt, l= g2 iv, i=z−1, Ks =−T1B3 −T2B4

is the stiffness matrix of the membrane, Ms = mB1 is the mass matrix of the membrane,
Ma =2rB1A is the fluid mass matrix, Ka =U2rB1B5AB5 is the fluid stiffness matrix and
G=UrB1(AB5 +B5A) is the fluid gyroscopic matrix. Equation (19) is a quadratic

Figure 3. The discretization of a circular membrane.
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Figure 4. The U	 2 versus ṽ2 diagram for a circular membrane, where U	 , ṽ and m̃ are the dimensionless flow
velocity, frequency and mass of the membrane, respectively. (a) m̃=0·1; (b) m̃=1·0.

eigenvalue problem. By introducing the new variable w*= lw̃ it can be transformed to
the standard eigenvalue problem

$ 0

−M−1K

I

−M−1G%0 w̃

w*1−l0 w̃

w*1=0001 . (20)

The eigenvalues of equation (20) for an assumed velocity flow U allow one to determine
the character of the membrane motion and to predict whether the membrane motion is
stable or unstable. For the case when l=0 (static loss of stability) equation (19) is reduced
to

(Ks −U2K1)w̃= 0, (21)
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Figure 5. The various instability regions for a circular membrane in a U	 2 versus m̃ diagram, where U	 and m̃
are the dimensionless flow velocity and frequency.

where K1 =−rB1B5AB5. Equation (21) is a generalized eigenvalue problem. By solving the
problem one obtains the critical velocities of the divergent type instability of the
membrane.

If the membrane is under flow with flow velocities U1 above and U2 below, then the fluid
matrices Ka and G take the forms

Ka =(U2
1 +U2

2)rB1B5AB5, G=(U1 +U2)rB1(AB5 +B5A). (22)

If the damping forces are taken into acount in the membrane vibration analysis the
membrane equation of motion (19) has the form

(K+ l(Cs +G)+l2M)w̃ = 0, (23)

where Cs is the damping matrix of the membrane (the other notation is as in equation (19)).
A damping matrix proportional to the matrices Ks and Ms was adopted in the numerical
analysis,

Cs = aKs + bMs , (24)

where a and b are constant coefficients.

Figure 6. The U	 2 versus Im l	 diagram for a circular membrane for the cases with (——) and without (– – –)
damping.
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Figure 7. The U	 2 versus Re l	 diagram for a circular membrane for the cases with (——) and without (– – –)
damping.

4. NUMERICAL RESULTS

Based on problem formulation given in sections 2 and 3, computer programs were
developed. The calculations were performed for three types of membranes: circular, square
and rectangular.

4.1.  1:   

The membrane is discretized by 18 elements (Figure 3). The system has 31 degrees of
freedom. The results of the dimensionless calculations are given in plots. The dimensionless
parameters used in the analysis are defined as ṽ2 =v2d2m/T, U	 2 =U2rd/T and m̃= m/rd,
where ṽ is the dimensionless frequency, U	 is the dimensionless flow velocity, m̃ is the
dimensionless mass of the membrane, T is the tension per unit width of membrane, m is
the mass of the membrane per unit area, d is the diameter of the membrane and r is the
air density. The U	 2 versus ṽ2 relationships for m̃=0·1 and 1·0 are given in Figures 4(a)
and 4(b), respectively. Stable and unstable regions of membrane motion are marked in
Figure 5. It can be observed from these figures that the first to occur is the divergent loss
of stability. The region of divergence is narrow and does not depend on m̃. The membrane
motion is then stable in the narrow region. That region is longer for smaller m̃. The increase

Figure 8. The discretization of a square membrane.
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Figure 9. The U	 2 versus ṽ2 diagram for a square membrane and for m̃=1·0, where U	 , ṽ and m̃ are the
dimensionless flow velocity, frequency and mass of the membrane, respectively. (a) a=0°; (b) a=45°.

of velocity again causes the loss of stability, but of the flutter type. It is coupled mode
flutter. It follows from Figure 4 that the structure under consideration, characterized by
these eigenvalue curves, belongs to the so-called ‘‘hybrid type structure’’ classification (see
reference [14]). The divergent loss of stability in subsonic flow occurs for simply supported
plates and the cylindrical shells as well (see references [15, 17].

The analysis of the damping influence on the membrane stability shows that damping
decreases the flutter velocity. In the case of the damped system the restabilization region
vanishes and the flutter velocity is equal to the second divergence velocity (Ufl =U2div). The
results of calculations are presented in Figures 6 and 7. The U	 2 versus Im l	 relationship
for m̃=0·1, a=0 and b	 =0·38 is shown in Figure 6, and the U2 versus Re l	 relationship
is shown in Figure 7 (l	 = ldzm/T, b	 = bdzm/T, l= g2 iv). It is clear that for the
damped membrane gq 0 and v$ 0 for UqU2div ; hence Ufl =U2div .

4.2.  2:   

The membrane is discretized by 32 elements. The system has 49 degrees of freedom (see
Figure 8). The results of dimensionless calculations are given in plots. The dimensionless
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parameters used in the analysis are ṽ2 =v2l2m/T, U	 2 =U2rl/T and m̃= m/rl, where U	 is
the dimensionless flow velocity, m̃ is the dimensionless mass of the membrane and l is the
span of the membrane. The other notations coincide with these from example 1. In Figures
9(a) and 9(b) are shown in the U	 2 versus ṽ2 relationship for a=0° and 45°, respectively.
For both cases, m̃=1. Stable and unstable regions of membrane motion are marked in
Figures 10(a) and 10(b) for a=0° and 45°, respectively. It can be observed from Figure
9(a) that the first and the second divergence velocities are nearly equal. The divergent
instability region is very small.

4.3.  3:   

The membrane is discretized by 32 elements, similarly to the square membrane. The
results of the calculations for the first two divergence velocities for a=0°, 45° and 90° and
b/l=0·8 are presented in Table 1, where l is the membrane length, b is its width and the
other notations are as for the square membrane. The modal shapes for the first divergence
velocity for a=0°, 45° and 90° and b/l=0·8 are given in Figures 11(a), 11(b) and 11(c),

Figure 10. The various instability regions for a square membrane in a U	 2 versus m̃ diagram, where U	 and m̃
are the dimensionless flow velocity and mass of the membrane.
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T 1

The dimensionless divergence velocity for a rectangular
membrane (U	 2 =U2rl/T, b/l=0·8)

Dimensionless divergence velocity
Angle, ZXXXXXXXCXXXXXXXV

a (degrees) U	 1 U	 2

0 3·331 3·483
45 3·152 3·437
90 3·104 3·304

respectively. One can see that the shape of the loss of stability for a=0° is similar to the
second mode shape of the free vibration for the membrane.

Reference [6] gives the analytical solution for aeroelastic stability for the rectangular
multi-span membranes. The divergence velocities for these membranes for a=0° are of
the form

U2
n,m =(p/r)z(n/l)2 + (m/b)2[T1 +T2(l/b)2(m/n)2] (25)

and the modal shapes are

w(x1, x2)=a(n, m) sin (npx1/l) sin (mpx2/b). (26)

where n, m=1, 2, . . . , and l and b are the membrane dimensions in the x1 and x2 directions
respectively. The dimensionless divergence velocities calculated from equation (25) for
T1 =T2 =T and b/l=0·8 are, for a=0°, U	 div =3·210, and for a=90°, U	 div =2·872. These
values are a few percent smaller than those for the single membrane (see Table 1).

If b:a and n=1, then equation (25) yields the solution for the 1-D multi-span
membrane: U2

div = pT/rl. Then the tension coefficient CT =T/(0·5rU2l) is CT =(2/
p)2 0·637 for divergence. This result is equal to that given in reference [1].

5. CONCLUSIONS

A numerical method for study of the stability of membranes in incompressible and
potential flow has been presented. The aerodynamic pressure associated with membrane
deformations is described by boundary integral and differential equations. The finite
element method for the membrane and the boundary element method discretization for
the air are used. To discretize the surface of the membrane, triangular curvilinear six-node
elements are applied. This formulation leads to non-symmetric and fully populated fluid
matrices.

The numerical examples enable one to state the following main conclusions.
1. The divergence is responsible for the first loss of stability. The first divergence

dimensionless velocity U	 is about 3·16 for the circular membrane and about 3·10 and 2·95
for the square membrane for a=0° and 45°, respectively.

2.Coupled mode flutter occurs for U	 greater then the second divergence velocity.
3. A small region of restabilization precedes the coupled mode flutter for the case of an

undamped system. This region is longer for a small dimensionless mass of the membrane.
4. The membrane damping decreases the flutter velocity and the restabilization region

is eliminated. The flutter velocity is then equal to the second divergence velocity.
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Figure 11. Modal shapes for the first divergence velocity for a rectangular membrane: (a) a=0°; (b) a=45°;
(c) a=90° (b/l=0·8, where l and b are the membrane length and width).
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